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Rationale: Stable isotope analysis (SIA), a potential method of verifying the geographic origin

and production method of dairy products, has not been applied to United States (U.S.) dairy

samples on a national scale. To determine the potential of carbon and nitrogen SIA in authenticity

assessment of U.S. dairy products, we analyzed a geographically representative collection of

conventional milk samples to determine isotopic variations with (1) Purchase Location and (2)

Macronutrient Content.

Methods: A total of 136 milk samples spanning five commercially available varieties (3.25%

[i.e., 'whole'], 2%, 1%, 0% [i.e., 'skim'] and 1% chocolate) were collected from randomly selected

counties across the U.S. as part of the United States Department of Agriculture's (USDA's)

National Food and Nutrient Analysis program. δ13C and δ15N values of bulk samples determined

via elemental analysis/isotope ratio mass spectrometry (EA/IRMS) were used to assess the

contribution of fat content, added sugar content and census‐designated region of collection to

isotopic variations within the dataset.

Results: There was a negative linear relationship between fat content and δ13C values, with

average milk δ13C values decreasing by 0.33‰ for each 8.75% increase in dry weight (1% wet

weight) fat content. The average δ13C value of flavored 1% chocolate milk samples, which contain

an additional 12 g of added sugar, was 2.05‰ higher than that of 1% unflavored milk (−16.47‰

for chocolate milk vs −18.52‰ for unflavored milk). When controlling for macronutrient content,

milk samples collected in West region supermarkets possessed significantly lower δ13C values

than samples collected from Midwest, South, and Northeast regions. δ15N values did not vary

with macronutrient content or region of collection.

Conclusions: Carbon stable isotope ratios in U.S. milk samples varied with macronutrient

content and region of purchase, suggesting that SIA can provide insight into production processes

within the U.S. dairy industry, with potential applications in national food adulteration and

authentication efforts.
1 | INTRODUCTION

The origin of dairy products is of interest in the United States (U.S.)

given the ethical and ecological implications of modern cattle rearing

practices. To meet the growing transparency demands of consumers,

dairy distributors have introduced products with specific production

method (organic, pasture‐raised, etc.) and geographic origin ('Real

California Milk' and 'Eat Wisconsin Cheese') claims and priced them

higher than their conventional counterparts, making them prime

targets for counterfeiting and fraud.1 Thus, there is a pressing need

for simple methods of verifying the geographic origin and production

method of U.S. dairy products.
wileyonlinelibrary.com
Numerous verification methods have been proposed, including

analysis of fatty acids,2,3 fat soluble vitamins,3 and ultraviolet‐

absorbing compounds.4 While these methods have demonstrated

various levels of success in differentiating feeding regimes and

geographic origins of animal‐based food products, the analysis of these

compounds requires complex pre‐extraction and purification steps,

rendering the methods incompatible with the large‐scale sampling

efforts that a nationwide authentication effort would entail.

One emerging method for food product origin assessment, which

overcomes the above limitations, is Stable Isotope Analysis (SIA) of

dairy products. SIA requires no complicated extraction steps and can

be run on an automated isotope ratio mass spectrometer. Since stable
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isotope ratios of animal tissues reflect the stable isotope composition

of their diet,5,6 SIA has the potential to distinguish the intake of

isotopically distinct diets within dairy systems. For example, the stable

isotope ratio of carbon (13C/12C) can be used to determine the intake

of 13C‐enriched C4 photosynthetic crops (e.g., maize) relative to C3

crops (e.g., wheat, silage),7,8 while the nitrogen stable isotope ratio

(15N/14N) can be used to distinguish the fertilization method of feed

crops and the proportion of nitrogen‐fixing crop species (e.g., soybeans)

in the diet.9 Numerous studies throughout Europe and Australasia

have assessed the relationships between light‐element stable

isotope signatures and the geographic origin10-17 and feeding/rearing

practices18-24 of dairy products. SIA shows promise as a method of

origin authentication, as it was recently used to successfully detect

counterfeits of European cheeses with protected designation of origin

(PDO).25,26

Despite the success of SIA in dairy product authentication within

the international literature, the stable isotope composition of U.S. dairy

products has not been well explored. In international analyses of

butter27 and milk,11 the δ13C values of U.S. dairy products were 5–8‰

higher than their European and Australian counterparts. However,

due to the limited sample size and geographic scope of the U.S. sample

sets (n <7 for both cases), these studies were unable to determine the

sources of the isotopic variations within the U.S. dairy supply. Such

variations, which could arise from differences in the isotopic

composition of the source cattle's diet (e.g., ratio of C3/C4 grains and

silage) or in the amount of isotopically conspicuous macronutrients in

the final product (e.g., fat and/or added sugar content of the milk),

may provide valuable information about the origin of milk within the

U.S. food supply.

To determine the utility of SIA as a tool for verifying the

production process of U.S. dairy products, constraining the sources

and extent of isotopic variability within the U.S. dairy supply is

essential. Here, we characterize the variability in carbon and nitrogen

stable isotope composition of conventional milk by purchase

location and macronutrient content via analysis of a geographically

representative collection of commercially available unflavored (skim,

1%, 2% and whole) and flavored (1% chocolate) milk varieties provided

by the USDA's National Food and Nutrient Analysis Program.
2 | EXPERIMENTAL

2.1 | USDA food sampling

Conventional (non‐organic) milk samples spanning four fat contents

(3.25% [i.e., 'whole'], 2%, 1%, and 0% [i.e., 'skim']), as well as flavored

1% chocolate milk, were collected by the United States Department

of Agriculture (USDA) Nutrient Data Lab (NDL) as part of the National

Food and Nutrient Analysis Program (NFNAP). Full details of the

NFNAP sampling plan can be located in the USDA's food sampling

protocol.28 Briefly, 24 counties within the U.S. were randomly selected

for sample collection from the four census‐designated geographic

regions using a probability‐proportional‐to‐size sampling plan based

on regional consumption data. In each selected county, 24 milk

samples of each fat content were collected from randomly selected
supermarkets and shipped on dry ice to one of the NDL's satellite

laboratories for processing. Brand selection was based on current

market share data at each sampling location. Upon arriving at the

USDA's food analysis laboratory, the 24 samples were homogenized

to produce a 'composite' sample for each county. Thus, the sample

set represents an extensive, geographically representative sampling

of milk within the U.S. food supply, with a 'theoretical' n of 576

(24 counties × 24 samples/county) for each milk variety.

Samples were collected and processed between 2008 and 2013

and stored at −80°C at the USDA's Food Analysis Laboratory Control

Center in Blacksburg, Virginia. Neither freezing nor cold storage affects

the stable carbon or nitrogen isotope composition.29 The samples were

shipped on dry ice in 60‐mL glass vials to the University of Hawaii at

Manoa and stored at −40°C prior to stable isotope analysis.
2.2 | Stable isotope analysis

Milk samples were freeze‐dried for 48 h in a Freezone 4.5‐L freeze‐

dryer (Labconco, Kansas City, MO, USA) and homogenized with a

mortar and pestle, using liquid nitrogen when necessary.

Two milligrams of each sample were loaded into high‐purity tin

capsules (EA Consumables, Pennsauken, NJ, USA) and analyzed for

carbon and nitrogen stable isotope composition using an ECS 4010

elemental analyzer (Costech Analytical Technologies Inc., Valencia,

CA, USA) coupled with a DeltaV stable isotope mass spectrometer

(Thermo Scientific, Bremen, Germany) via a Conflo IV interface

(Thermo Scientific). Stable isotope ratios are reported in standard

δ‐notation [δ = Rsample/Rstandard − 1], with R representing the isotope

ratio (13C/12C, 15N/14N) in the sample or international standard

(VPDB for carbon, AIR for nitrogen). Post‐run off‐line blank‐, size‐,

and drift‐corrections for assigning the final δ13C and δ15N values

on the VPDB and AIR scales, respectively, were performed according

to Werner and Brand.30 The internal laboratory standards used in

normalizing data were L‐glutamic acid (Thermo Fisher, Grand Island,

NY, USA; δ13C = −13.43‰) and glycine (Thermo Fisher; δ13C =

−43.51‰) for carbon and glycine (Thermo Fisher; δ15N = 1.24‰)

and glycine (Brian Popp Lab; δ15N = 11.25‰) for nitrogen. Values

are reported in units of permil (‰) and represent the mean of three

analyses (standard deviation (SD) of three replicates never exceeded

0.1‰ for δ13C values and 0.2‰ for δ15N values).
2.3 | Statistical analysis

Descriptive statistics (means, SDs, sample size) are reported for each

fat level. To determine the effect of fat content on milk stable isotope

composition, we conducted simple linear regressions between the

δ13C and δ15N values of unflavored milk samples and fat content as

% dry mass. The water contents of milk varieties for dry mass

calculations were derived from the USDA's National Nutrient Database

for Standard Reference.31 One‐way analysis of variance (ANOVA)

was used to assess whether the δ13C and δ15N values of USDA

milk samples differed between purchase regions. When a significant

F‐value was found, the means were separated using Tukey's

Honestly Significant Difference (HSD) test at a confidence level of

95%. The four census‐designated regional divisions used in our



FIGURE 1 Census‐designated regions of the United States as defined by the U.S. Census Bureau32
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study were the West, Midwest, South, and Northeast (Figure 1), as

defined by the U.S. Census Bureau.32 Statistical analyses were

conducted using GraphPad Prism 6 (Graphpad Software Inc., La

Jolla, CA, USA).
3 | RESULTS

Summary statistics of δ13C and δ15N values for each milk variety

(0%, 1%, 2%, 3.25%, and 1% chocolate) are presented in Table 1. The

complete dataset is available in Table S1 (supporting information).

For unflavored samples, there was a significant negative linear

relationship between fat content and measured δ13C values (Figure 2),

with average milk δ13C values decreasing by 0.33‰ for each 8.75%

increase in dry weight (1% wet weight) fat content (y = −0.0376x

− 18.15, p <0.0001). The calculated carbon isotope discrimination

between the lipid and lipid‐free portions of milk (Δ13Clipid‐lipid free) was

−3.76‰. There was a larger range of δ13C values for whole milk

(4.01‰) than for the 2% fat milk (3.58‰), 1% (3.65‰), and skim milk

(3.25‰) samples, although the variances were not significantly

different (Figure 3). Milk δ15N values did not vary with fat level, with

all flavored and unflavored samples fitting within a narrow range of

4.5–6.2‰ (Figure 4). The average δ13C value of 1% chocolate milk

was −16.47‰, which was 2.05‰ higher than that of 1% unflavored

milk (−18.52‰).

Milk samples collected in West region supermarkets possessed

significantly lower δ13C values than samples collected from

the Midwest, South, and Northeast regions (Figure 2), with average

δ13C values of West region milk samples being 1–2.1‰ lower than

those of other regions. Within the West region, milk samples collected
TABLE 1 Mean USDA milk carbon and nitrogen stable isotope ratios
by nutrient content*

Variety
Fat content
(% dry weight)

δ13C values*
(‰)

δ15N values*
(‰)

Skim 0.96 −18.08 ± 0.84 (27) 5.21 ± 0.40 (27)

1% 8.75 −18.53 ± 0.89 (27) 5.24 ± 0.44 (27)

2% 17.50 −18.91 ± 0.97 (28) 5.17 ± 0.39 (28)

Whole 29.41 −19.19 ± 1.06 (28) 5.09 ± 0.41 (28)

1% Chocolate 8.75 −16.49 ± 1.03 (26) 5.27 ± 0.40 (26)

*Mean ± 1 SD (number of samples)
from the Pacific coast states (California and Washington) possesssed

the five lowest δ13C values in all fat levels tested. For skim milk, the

mean δ13C value of these 'Pacific west' samples (−19.51 ± 0.28‰)

was significantly lower than that of the 'mountain west' samples from

Colorado and Arizona (−17.76‰ ± 0.52). The highest δ13C values

(−16.65‰ for skim milk) were found in milk samples from

North Carolina. Mean regional δ15N values were not significantly

different.
4 | DISCUSSION

Our study represents the first nationwide characterization of carbon

and nitrogen stable isotope signatures for commercially available milk

varieties within the United States food supply. Our analyses revealed

variations in the carbon stable isotope signatures of milk with (1)

Macronutrient Content and (2) Region of Collection.
4.1 | Fat/added sugar content alters milk δ13C
signatures

The stable isotope signatures of milk products are influenced by the

unique compositions of naturally occuring and added nutrients. Of

the naturally occuring components, the difference in carbon stable

isotope composition between the lipid (triacylglycerols/sterols) and

lipid‐free (protein/carbohydrate) components (Δ13Clipid‐lipid free) is

particularly conspicuous, with lipids possessing lower δ13C values

due to enzymatic fractionations during formation.5 Δ13Clipid‐lipid free
FIGURE 2 Relationship between fat content and δ13C values of
unflavored milk samples



FIGURE 3 δ13C values of (A) skim, (B) 1%, (C) 2%, (D) whole, and (E)
1% chocolate milk samples by census‐designated region of purchase.
Different lowercase letters indicate that regional mean values are
significantly different according to Tukey's HSD test

FIGURE 4 δ15N values of (A) skim, (B) 1%, (C) 2%, (D) whole, and (E)
1% chocolate milk samples by census‐designated region of purchase
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values of −3.3 and −3.5‰ were determined for stall‐ and pasture‐fed

cows, respectively, on long‐term, isotopically consistent diets.33 The

similar offset between the Δ13Clipid‐lipid free value (−3.76‰) calculated

in our study and the values from controlled feeding studies with

homogeneous diets suggests that dairy cattle on conventional U.S.

dairy farms are close to isotopic equilibrium, i.e., their diets are

homogeneous over a long period of time, and that the effect of varying
lipid concentrations on the isotopic composition of milk may be

predictable. However, further studies on the temporal variations in milk

Δ13Clipid‐lipid free values from individual milk suppliers are necessary

before a universal relationship between lipid content and δ13C values

can be established for U.S. milk products.
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Flavored milk products, with chocolate milk being the most

common, account for approximately 25% of the fluid milk consumed

in America34 and over 60% of milk consumed within the U.S. school

system.35 Flavored milk contains approximately 12 g of added sugar

per 8 oz serving.31 This added sugar, which is primarily derived from

the C4 plant sugarcane in the U.S., probably explains the 2.05‰ higher

δ13C values of 1% chocolate milk samples than those of unflavored 1%

milk samples observed in our study. Using the average measured δ13C

values of cane sugar (−12.16‰, n = 3, unpublished data) and

unflavored 1% milk (−18.53‰, n = 28), along with proportional carbon

contributions of 0.31 and 0.69 for sugar and milk, respectively, we

calculated the δ13C value of 1% chocolate milk to be −16.56‰, which

is within 0.1‰ of the average measured δ13C value for 1% chocolate

milk in our study (−16.47‰). These data provide further evidence of

the conspicuous and predictable δ13C signatures of added‐sugar‐

containing foods in the American diet, supporting the potential utility

of a δ13C biomarker of added sugar intake.36
4.2 | Regional estimates of maize feeding in U.S.
dairy products

In our study, we observed a largely homogeneous stable isotope

composition within each milk variety, with δ13C and δ15N value

ranges of ≈3.5‰ and ≈1.5‰, respectively, suggesting relatively

similar feeding regimens for conventional U.S. dairy cattle. To estimate

the contributions of C3 and C4 crops to dairy cattle diets, we

inserted the δ13C value of whole (3.25%) milk, which reflects the

δ13C value of the diet,7 into a mass balance equation, with δ13C

values of −27‰ (average value for C3 plants) and −12‰ (average

value for C4 plants) representing milk from cows consuming 0%

and 100% maize, respectively. The average whole milk δ13C value

of −19.19‰ measured in our study suggests that the source dairy

cattle consumed a diet containing approximately 50% C4 plants

(e.g., maize), while none consumed a diet containing less than 35%

C4 plants. The homogeneous, corn‐based diet of U.S. dairy cattle

suggested by our results reflects the recent movement of the dairy

industry towards regional concentrated animal feeding operations

(CAFOs), large feedlot systems in which cattle are raised on

homogenous, maize‐based rations.37

Despite the low overall variation in δ13C and δ15N signatures of U.

S. milk products, we observed regional patterns within the δ13C

dataset, with skim milk samples from the West region exhibiting mean

δ13C values approximately 1.34‰ lower than those of skim milk

collected in other census regions. Assuming an increase in milk δ13C

value of 1.43–1.52‰ for each 10% increase in dietary maize

content,8,9 the source cattle of west‐coast dairy samples consumed a

diet containing approximately 8–9% less maize than dairy cattle in

other regions of the country. Jahren and Kraft38 noted a similar

difference of 1.5‰ in the carbon stable isotope signatures of fast‐food

beef samples collected from west‐coast and east‐coast restaurants,

suggesting distinct feeding patterns for the beef and dairy cattle

supplying western retail markets. This may result from (a) higher rates

of pasture‐feeding for west‐coast dairies or (b) higher proportions of

C3 grains (e.g., wheat and barley) in the diets of western cattle due

to regional availability. Although the source dairies/feedlots of the
samples collected in our study and those of Jahren and Kraft are not

available, the results are indicative of distinct regional supply chains

for terrestrial animal proteins in America.
5 | CONCLUSIONS

Here we report the first nationwide carbon and nitrogen stable

isotope analysis of commercially available milk in the United States.

Both fat and added sugar concentration, which altered the carbon

stable isotope composition in our sample set, must be accounted

for when comparing milk samples with heterogeneous macronutrient

compositions. In samples with similar macronutrient content, the

measured stable isotope signatures in our study were largely

homogeneous, supporting the consolidation of feeding regimens and

production processes that has characterized the U.S. dairy industry

in recent decades. However, the distinct δ13C signature of milk

collected in the West region suggests that regional variations in feed

composition still persist among conventional dairy farms. While further

studies are needed to verify regional and production method variations

in stable isotope signatures, the representative values determined in

this study can be used as a foundation for interpretation of dairy

product stable isotope ratios in the American food supply.
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